
International Journal of Scientific & Engineering Research Volume 2, Issue 8, Auguest-2011 1

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

An Adaptive Framework for the Selection of
Embedded Operating Systems

Sachin R. Sakhare, Dr. M.S. Ali

Abstract— The embedded system area today is faced with the challenge of implementing the applications that can execute efficiently on

limited resources and that meet nonfunctional requirements such as timeliness, robustness, dependability and performance. At the core,

these requirements need to be managed by the operating system. Thus, an embedded operating system has to address not only the

aforementioned issues but also the issues arising out of the requirements of newer embedded applications. Such types of constraints are

difficult to meet in an embedded operating system and this is the reason that the contemporary embedded operating systems are designed

for specific application areas. This research work aims at identifying a common and adaptive framework for embedded operating systems so

that a customized embedded operating system can be generated according to the requirements of an application.

Index Terms— Embedded System, RTOS, Embedded system design. Real Time system

—————————— ——————————

1 INTRODUCTION

Embedded systems can be defined as computing systems
with tightly coupled hardware and software that are
designed to perform a dedicated function. The word
embedded reflects the fact that these systems are usually
an integral part of a larger system.
It is not hard to find a large variety of applications where
embedded systems play an important role, from small
stand-alone systems, like a network router, to complex
embedded systems supporting several operating
execution environments as can be found in avionic
applications. This variety of applications also implies that
the properties, platforms, and techniques on which
embedded systems are based can be very different. The
hardware needs can sometimes be achieved with the use
of general purpose processors, but in many systems
specific processors are required, for instance, specific
digital-signal-processing devices to perform fast signal
processing. Memory management capabilities are
necessary in some systems to provide memory protection
and virtual memory. Special purpose interfaces are also
needed to support a variety of external peripheral
devices, energy consumption control, and so on.
Nowadays, the use of processor-based devices has
increased dramatically for most of the daily activities,
both professional and leisure. Mobile phones and PDAs
are used extensively. Consumer electronics (set-top boxes,
TVs, DVD players, etc.) have incorporated
microprocessors as a core system component, instead of
using specific hardware. This trend is expected to grow
exponentially in the near future.

1.1 RESEARCH ISSUES IN EMBEDDED OPERATING

SYSTEMS:
Embedded applications are characterized by the
following common features which also indicate the
constraints to be managed by the embedded operating

system.
1. Limited resources: There are often strong

limitations regarding available resources. Mainly
due to cost and size constraints related to mass
production and strong industrial competition,
the system resources as CPU, memory, devices
have been designed to meet these requirements.
As a result of these limitations, the system has to
deal with an efficient use of the computational
resources.

2. Real-time application requirements: Some of the
applications to be run in these devices have
temporal requirements. These applications are
related with process control, multimedia
processing, instrumentation, and so on, where
the system has to act within a specified interval.

3. Embedded control systems: Most of the
embedded systems perform control activities
involving input data acquisition (sensing) and
output delivery (actuation). Deterministic
communications are also another important
issue.

4. Quality of service: Feedback based approaches
are being used to adjust the performance or
quality of service of the applications as a function
of the available resources.

5. Rapid development and deployment: Due to
fierce competition in embedded systems
applications the design time, prototyping time
and deployment time play a critical role as these
timings decide the time-to-market.

The challenge is how to design and implement
applications that can execute efficiently on limited
resource and that meet nonfunctional requirements such
as timeliness, robustness, dependability and performance.
Although these requirements belong to the embedded

International Journal of Scientific & Engineering Research Volume 2, Issue 8, Auguest-2011 2

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

applications they need to be managed by the operating
system. Thus, an embedded operating system needs to
address not only the aforementioned issues but also the
issues arising out of the requirements of newer embedded
applications. Such types of constraints are difficult to
meet in an embedded operating system and this is the
reason that the embedded operating systems are designed
for specific application areas. In this paper we have
proposed a common and adaptive framework for
embedded operating systems, so that a customized
embedded operating system can be generated according
to the requirements of an application.
This paper is organized as follows: in section 2 we survey
the related work in selecting the RTOS and
reconfiguration of it. Section 3 describes the important
parameters of Embedded operating Systems and its role
in embedded system design. In Section 4 we explain our
idea of and adaptive framework for the selection of
embedded operating systems. Section 5 provides the
conclusion and direction of future work.

2 RELATED WORK
In this section, a survey of related works in the area of
reconfigurable real time operating systems is presented.
The past decade has seen a significant research work on
selecting the RTOS. Designers are impressive task when
selecting the RTOS for specific applications like Space,
Security, military, process industry, communications,
robotics, Data Acquisition, consumer electronics and so
on in which each application demands specific
requirements.
 Embedded operating systems allow you to develop
applications faster. They can require a little more
overhead, but as the technology improves, the overhead
seems to diminish. In Greg Hawley, he has provided
criteria for selection of RTOS based on the processor and
based on the requirements. He also considered many
other parameters like, company profile, licensing policy
technical support etc.
In a selection methodology for the RTOS market various
method are adopted for space applications. This paper
describes the elimination criteria for selection of RTOS to
a very specific space application and ranked the existing
commercial RTOS that are available in the market but
they have not provided the generic framework for RTOS
selection. In [20], how to select your RTOS described the
framework for selection of RTOS for a class of
applications and its characteristics that meets the
application but it doesn’t provided the methodology to
select the RTOS based on the designers/developers
requirements which are incorporated in this paper.
Criteria for selection of a RTOS need to be much more
flexible and much less specific.
Since 1940, several optimization problems have not been
tackled by classical procedures including: Linear

Programming, Transportation, Assignment, Nonlinear
Programming, Dynamic Programming, Inventory,
Queuing, Replacement, Scheduling etc.
Embedded systems are special-purpose systems. They are
often designed to perform very specialized tasks. Any
operating system running on such a specialized system
could benefit greatly from adapting to specific
requirements. Therefore, configurable operating systems
seem advantageous for embedded systems. The
requirements for a dynamic configuration system for
embedded operating systems are as follows
(i) The system should allow low-level resource
managers to be configured to allow maximum
flexibility. (ii)The run-time overhead should be
minimal.(iii)The memory footprint should be small.
(iv)The system should not require a hardware memory
management unit.(v) Re-configuration should be
reasonably fast compared to the lifetime of an application.
(vi) Real-time computing should be possible in between
re-configurations.
It has been shown that embedded operating systems can
be configured dynamically by loading and linking code
into the system at run-time.
A lot of work has been produced in the domain of
adaptive architectures. Different techniques have been
introduced for clock and voltage scaling [8], cache
resources [5], and functional units [9] allocations. These
approaches can be classified in the category of local
configurations based on specific aspects. Real Time
Operating System (RTOS) for hardware management has
been recently introduced. Proofs of concepts are exhibited
in [9, 4]. These experiments show that RTOS level
management of reconfigurable architectures can be
considered as being available from a research perspective.
In [7], the RTOS is mainly dedicated to the management
(placement/communication) of hardware tasks. Run-time
scheduling of hardware tasks/algorithms are described in
[4]. In [9], the scheduling layer is an OS extension that
abstracts the task implementation in hardware or
software; the main contribution of this work is the
communication API based on message passing where
communication between hardware and software tasks is
handled with a hardware abstraction layer. Moreover, the
heterogeneous context switch issue is solved by defining
switching points in the data flow graph, but no
computation details are given. In [6], abstraction of the
processor and programmable hardware component
boundary is supported by hardware thread interface
concept, and specific real time operating system services
are implemented in hardware. In [10, 12] service oriented
architecture is discussed for the design and development
of embedded applications. The current state of the art
shows that adaptive, reconfigurable, and programmable
architectures are already available, but there is no real
complete solution proposed to guarantee safe

International Journal of Scientific & Engineering Research Volume 2, Issue 8, Auguest-2011 3

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

configuration of operating system with reference to
application requirements. It motivates for the
investigation of an adaptive framework for embedded
operating system generated for application specific
requirements.

3 SELECTION OF RTOS
Ranking RTOS is a tricky and difficult because there are
so many good choices are available in the market . The
developer can choose either commercial RTOS (44%
developers are using) or open- source RTOS (20) or
internally developed RTOS (17 %).This shows that almost
70% of developers are using the RTOS for their current
projects and are migrating from one RTOS to another
due to various reasons. To handle the current
requirements of the customers, developers are using 32
bit controllers in their projects in which 92% projects/
products are using RTOS and 50% of developers are
migrating to another RTOS for their next project. This
influences importance of the selection of right RTOS to a
particular project so that it meets all the requirements and
fulfills its intended task.
In all of the related work authors have used the
elimination criteria which are manual and it takes more
time and need the detailed specifications of all the
existing commercial RTOS’s. In order to select RTOS, the
designer first identify the parameters for selection based
on the application and the intended requirements are
provided to the systems through an interactive user
friendly GUI.

3.1 IMPORTANT EMBEDDED OPERATING SYSTEM
 PARAMETERS

Among the different parameters for selecting the RTOS,
the ones used in our system are: 1. Interrupt Latency, 2.
Context switching 3. Inter task Communication (Message
Queue mechanism, Signal Mechanism, Semaphores),
4.Power management (Sleep mode, Low power mode,
idle mode, Standby mode) 5. No. of Interrupt levels 6.
Kernel Size 7.Scheduling Algorithms (Round Robin
Scheduling, First Come First Serve, Shortest Job First,
Preemptive Scheduling etc), 8.Interrupt Levels, 9.
Maintenance Fee 10 Timers 11. Priority Levels 12.Kernel
Synchronization (timers, mutexes, events, semaphores
etc), 13. Cost, 14. Development host, 15.Task switching
time and 16 Royalty Fee. There are more parameters like
target processor support, Languages supported, Technical
support etc. are also important which are considered by
the developer. We have used the knowledge base for
storing the features of an embedded operating systems
Then we use our framework for selecting embedded
operating system, which is described in the following
section. Our system will output a set of EOS from which
one will be selected by considering the processor support,

languages supported and Technical Support etc which are
also important.
4 PROPOSED FRAMEWORK

 Fig.1. Architecture of the System

Figure 1 :- Architecture of the system

We have developed a graphical user interface so that the
user can specify the weights for the parameters of the
RTOS for his application. The parameters specified by the
user using the GUI are given below.
Development Methodology – Cross Weight – 1
RTOS Supplied as – Object Weight – 2
Development Host – UNIX Weight – 3
Standard – POSIX .1 Weight – 4
Kernel ROM – 280K/4M Weight – 5
Kernel RAM – 500K/4G Weight – 6
Priority Levels – 512 Weight – 7
Multi process Support – No Weight – 8
Multiprocessor Support – No Weight – 9
MMU Support – No Weight – 10
Royalty free – No Weight– 11
Standard phone support – Paid Weight – 12
Preferred phone support – Paid Weight – 13
Base price – 7495$ Weight – 14
Maintenance fee – 15% of list price Weight– 15
Task switching time – 4us to 19us Weight – 16

4.1 FITNESS FUNCTION
The fitness function is the weighted sum of the
parameters given in section 3, each of which contribute
the ―goodness‖ of the final selection of embedded
operating system. Fitness is s evaluated by using the
fitness function (FF) which is given by
FF= ∑ (Wi Fi)
Where Wi is the wait of the ith parameter and Fi is the
fitness value of the ith parameter.
Let us first consider the weights. Each application of an
embedded system will have specialized requirements.
The requirements can be characterized using the
parameters specified in section 4 by assigning appropriate
weights. The weights change depending on the

International Journal of Scientific & Engineering Research Volume 2, Issue 8, Auguest-2011 4

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

application. For example, for children toys, cost may be
the main criteria and hence will have maximum weight
while for robotic applications response time would be the
parameter with maximum weight. To meet these
specifications, the user has to specify the weights for each
parameter so that an appropriate OS will be selected. In
the fitness function, Wi is the weights assigned by the
user. consider, now, the fitness values. The parameters of
RTOS given above have different values for different
RTOS. For example, the interrupt latency can be 5ns for
one RTOS and 15ns for another. The different values are
mapped to a scale and the value on the scale is the fitness
value. For example, if the scale for interrupt latency is 5 to
15 then, for the RTOS with 5ns as interrupt latency, the
fitness value is 1 as it is better to have low interrupt
latency. Since the values of these parameters are available
beforehand for the RTOS that are available in the market,
the fitness values are precompiled at the time of
generating the database of RTOS. However, the designer
can alter the values if needed. Now, by using the fitness
function FF defined earlier, we evaluate the overall fitness
value for the given criteria.
The user gets an appropriate RTOS just by giving the
specifications and the desired accuracy and the whole
search based on those specifications is carried out by the
system and hence the result is provided through an easy
designed interactive GUI. The user has the option of
specifying the accuracy percentage to carry out his search
which could vary depending on the level of strictness
required, which is an efficient method compared to other
methods which uses the elimination criteria The user has
the provision of selecting more than one option in each
parameter thus making his search more advanced in
terms of parameters. Choosing the most appropriate
RTOS can still result in significant cost savings, improved
level of technical support and high levels of product
integration.

5 CONCLUSION
Embedded applications have become a popular these
days due to the complexity in the system. To meet those
complexities, the developers are given the invariable task
of making the embedded software. There are quite large
number of embedded operating systems are available in
the market and one dose get confused as to which one
such that it provides the efficient embedded systems
design in terms of cost, power consumption, reliability,
speed etc. In this paper, we described a Simple adaptive
framework that is designed to find the suitable embedded
operating systems for a specific application. The
methodology described for RTOS selection is unique and
efficient for large number of RTOS’s. It has user-friendly
graphical interface (GUI) though which the designer can
alter

the specifications and specify the new requirements for
embedded operating system selection for a given
application. It generates the optimal RTOS based on the
requirements that are entered by the user keeping in
mind the amount of accuracy required. This is done with
the help of fitness function. Our analysis and the
developed system gives the user a portal to decide a real
time operating system which most suits his choice of
parameters and is the most optimal one available for that
purpose. The designer has an option of choosing from
pre-defined input or can specify his/ her own input.

REFERENCES

[1] RTOS for FPGA-A White paper by Colin Walls, Accelerated Technology,

Embedded Systems Division, Mentor Graphics Corporation

(www.mentor.com/fpga).

[2] Victor Yodaiken and Michael Barabanov ―design Document about

RTLinux in FSMLabs 1997.

[3] Koza, John R., Genetic Programming: On the Programming of Computers

by Means of Natural Selection. Cambridge, MA: The MIT Press, 1992.

[4] Cramer, Nichael Lynn: "A Representation for the Adaptive Generation of

Simple Sequential Programs" Proceedings, International Conference on

Genetic Algo, July 1985 [CMU], pp183-187.

[5] Wayne Wolf, Computers as Components: Principles of Embedded

Computing System Design, Morgan Kaufmann Publishers, 2001.

[6] Frank Vahid and Tony Givargis, Embedded System Design: A Unified

hardware/ Software introduction, John Wiley& Sons, 2002.

[7] Scott Rosenthal, Selecting an embedded Processor involves both simple

and non-technical criteria, June, 1997.

[8] Sharad Agarwal, Edward Chan, Ben Liblit, Processor Characteristic

Selection for Embedded Applications via Genetic Algorithms,

December,1998.

[9] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine

Learning. Reading, MA: Addison-Wesley, 1989.

[10] Khawar M. Zuberi, Kang G. Shin, (2001). EMERALALDS: A Small-

memory Real Time Microkernel", IEEE Trans on Software Eng.; Vol.27,

No.10, Oct.pp. 909 - 929.

[11] Shanil Mechant, Kalen Dedhia,"Performance computation of RTOS,

thesis, Dept of electrical Eng., Columbia University.

[12] Mehrdal Dianati, Insop Song, Mark Treiber, ―An Introduction to Genetic

Algorithms and Evalution Stragies” Univ. of Waterloo, Canada.
 [13] Martin Timmerman, ―RTOS Evaluations‖, Real Time Magazine 98(3)

March 1998.

[14] David Stewart, ―Measuring Execution time and Real Time

Performance‖, Embedded Systems conference, San Francisco, April 2001.

[15] K. Obenland, ― Real Time Performance of Standards based Commercial

Operating Systems, Embedded Systems conference, San Francisco, April

2001.

[16] Philip Melanson, Siamak Tafazoli, ―A selection methodology for the

RTOS market‖, DASIA 2003 conference, Prague Czec Republic, June 2003,.

[17] Ger Scoeber, ―How to select your RTOS‖ Bits and Cips Micro-event:

Embedded operating Systems, Jan 29th 2004.

[18] Greg Hawley, ―Selecting a Real-Time Operating System” Embedded

Systems Programming Magazine. [www.embedded.com]

International Journal of Scientific & Engineering Research Volume 2, Issue 8, Auguest-2011 5

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

[19] Ljerka Beus-Dukic, ―Criteria for Selection of a COTS Real-Time

Operating System: a urvey‖[ljerka.beus@unn.ac.uk]

[20] Jim Turly, ―Embedded Systems survey: Operating systems up for

grabs‖, Embedded Systems Design, May 24 2005.

————————————————
Sachin R. Sakhare is currently working as Asst. Prof. at VIIT,Pune and

pursuing PhD degree in Computer Science & Engg. at SGBAU Amravati

,India, PH-+919850315601.

 E-mail:sakharesachin7@gmail.com

Dr.M.S.Ali is currently working as Principal at PRMCOE, Badnera Amravati

, India ,He is also a chairman of BOS at Amravati University, Amaravati, PH-

+919370155150.

E-mail:softalis@gmail.com

